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1 ZKPrivacy: Quantum‐Secure Privacy Blockchain

1.1 Formal Specification v1.0

Purpose: This document serves as a complete, formally verifiable specification for a quantum‐
secure, privacy‐by‐default blockchain. It is designed to be implementable and verifiable by
advanced AI systems.

2 IMMUTABLE REQUIREMENTS

2.1 � THIS SECTION IS IMMUTABLE �

The following requirements define the core properties of the ZKPrivacy blockchain. These re‐
quirements:

• MUST NOT be modified, weakened, or removed
• MUST NOT be circumvented through implementation choices
• MUST be satisfied by any conformant implementation
• ARE the acceptance criteria for the final system

Any implementation that violates these requirements is non‐conformant and invalid.

2.2 R1. PRIVACY REQUIREMENTS

2.2.1 R1.1 Privacy by Default [MANDATORY]

Every transaction MUST be private.
There MUST NOT exist any transparent transaction mode.
There MUST NOT exist any option to disable privacy.
There MUST NOT exist any mechanism to selectively reveal transaction data

without explicit action by the key holder.

2.2.2 R1.2 Sender Privacy [MANDATORY]

Given a valid transaction, no adversary without access to private keys
SHALL be able to determine which outputs were spent
with probability greater than 1/N,
where N is the total number of outputs in the system.
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2.2.3 R1.3 Receiver Privacy [MANDATORY]

Given a valid transaction, no adversary without access to the recipient's
view key SHALL be able to link any output to any address.

2.2.4 R1.4 Amount Privacy [MANDATORY]

Given a valid transaction, no adversary without access to private keys
SHALL be able to determine the value of any input or output.

2.2.5 R1.5 Network Privacy [MANDATORY]

The network layer MUST implement transaction propagation mechanisms
that prevent correlation between transaction origin and IP address.

Dandelion++ or equivalent privacy-preserving propagation is REQUIRED.

2.3 R2. SECURITY REQUIREMENTS

2.3.1 R2.1 Quantum Security [MANDATORY]

ALL cryptographic primitives MUST be secure against quantum computers.

Specifically:
- Commitment scheme: MUST be based on post-quantum assumptions (lattice-based)
- Digital signatures: MUST be post-quantum (hash-based: SPHINCS+)
- Key encapsulation: MUST be post-quantum (lattice-based: ML-KEM/Kyber)
- Zero-knowledge proofs: MUST be post-quantum (hash-based: STARKs)
- Hash functions: MUST have quantum security (SHA-3/SHAKE256)

The following are PROHIBITED:
- Elliptic curve cryptography (ECDSA, EdDSA, ECDH)
- RSA
- Discrete logarithm-based systems
- Pairing-based cryptography
- Any system vulnerable to Shor's or Grover's algorithm beyond security margin

2.3.2 R2.2 No Trusted Setup [MANDATORY]

The system MUST NOT require any trusted setup ceremony.
There MUST NOT exist any "toxic waste" or trapdoor information

that could compromise the system if revealed.
All parameters MUST be publicly verifiable and deterministically derived.
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2.3.3 R2.3 Cryptographic Binding [MANDATORY]

The commitment scheme MUST be computationally binding.
It MUST be computationally infeasible to open a commitment to two different values.

2.3.4 R2.4 Cryptographic Hiding [MANDATORY]

The commitment scheme MUST be computationally hiding.
A commitment MUST reveal no information about the committed value.

2.3.5 R2.5 Proof Soundness [MANDATORY]

The zero-knowledge proof system MUST have soundness error < 2^-100.
It MUST be computationally infeasible to generate a valid proof

for a false statement.

2.3.6 R2.6 Proof Zero‐Knowledge [MANDATORY]

The zero-knowledge proof MUST reveal nothing beyond the truth of the statement.
There MUST exist a simulator that can produce indistinguishable proofs

without knowledge of the witness.

2.4 R3. DECENTRALIZATION REQUIREMENTS

2.4.1 R3.1 Permissionless Participation [MANDATORY]

Anyone MUST be able to:
- Run a full node
- Validate the blockchain
- Create transactions
- Participate in consensus (mining)

There MUST NOT be any registration, approval, or permission required.

2.4.2 R3.2 No Privileged Parties [MANDATORY]

There MUST NOT exist any party with special privileges including:
- Ability to censor transactions
- Ability to reverse transactions
- Ability to mint coins outside of consensus rules
- Ability to modify protocol rules unilaterally
- Access to backdoors or master keys
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2.4.3 R3.3 ASIC Resistance [MANDATORY]

The consensus mechanism MUST use an algorithm that is resistant to
specialized hardware (ASICs).

Mining MUST remain viable on commodity CPU hardware.

2.4.4 R3.4 Open Source [MANDATORY]

All protocol specifications MUST be public.
All reference implementations MUST be open source.
There MUST NOT be any proprietary components required for participation.

2.5 R4. INTEGRITY REQUIREMENTS

2.5.1 R4.1 Fixed Supply [MANDATORY]

Maximum supply: 21,000,000 ZKP
This limit MUST NOT be changed.
This limit MUST be enforced by consensus rules.
There MUST NOT exist any mechanism to create coins beyond this limit.

2.5.2 R4.2 No Inflation Bugs [MANDATORY]

The system MUST mathematically guarantee that:
- No transaction can create value from nothing
- Sum of inputs = Sum of outputs + fee (always)
- This property MUST be enforced by zero-knowledge proofs

2.5.3 R4.3 Double‐Spend Prevention [MANDATORY]

Each output MUST be spendable exactly once.
The nullifier mechanism MUST deterministically prevent double-spending.
This MUST be enforced at consensus level.

2.5.4 R4.4 Transaction Finality [MANDATORY]

Once a transaction is confirmed with sufficient depth,
it MUST be computationally infeasible to reverse.

Reorganizations MUST follow the heaviest chain rule.
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2.6 R5. FUNCTIONAL REQUIREMENTS

2.6.1 R5.1 Basic Transaction Support [MANDATORY]

The system MUST support:
- Multiple inputs per transaction (�16)
- Multiple outputs per transaction (�16)
- Variable transaction fees
- Memo fields for recipient

2.6.2 R5.2 Wallet Functionality [MANDATORY]

The system MUST support:
- Deterministic key derivation from seed phrase
- Balance scanning using view keys only
- Transaction creation using spend keys
- View key sharing for audit purposes (without spend capability)

2.6.3 R5.3 Light Client Support [MANDATORY]

The system MUST support light clients that can:
- Verify transaction inclusion via Merkle proofs
- Scan for owned outputs without full chain
- Operate with privacy guarantees intact

2.7 R6. PERFORMANCE REQUIREMENTS

2.7.1 R6.1 Transaction Processing [MANDATORY]

Proof generation: MUST complete in < 120 seconds on reference hardware
Proof verification: MUST complete in < 2 seconds
Block validation: MUST complete in < 30 seconds for 1000 transactions

2.7.2 R6.2 Storage [MANDATORY]

The system MUST be operable on hardware with:
- 500 GB storage for full node (initial years)
- 16 GB RAM
- 4-core CPU

2.7.3 R6.3 Network [MANDATORY]

Block time: 120 seconds (target)
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Transaction throughput: � 10 TPS sustained
Block size: Sufficient for throughput target

2.8 R7. NON‐REQUIREMENTS (Explicitly Excluded)

2.8.1 R7.1 NOT Required

The following are explicitly NOT requirements:
- Smart contracts (out of scope for v1)
- Governance tokens (no on-chain governance)
- Staking mechanisms (PoW only for v1)
- Regulatory compliance features
- Selective disclosure (privacy is absolute)
- Identity systems
- Interoperability with other chains (future work)

2.8.2 R7.2 NOT Permitted

The following MUST NOT be implemented:
- Backdoors for any party including developers or governments
- Transaction censorship mechanisms
- Blacklisting of addresses or outputs
- "View-only" regulatory access without key holder consent
- Inflationary monetary policy
- Centralized components (oracles, coordinators, sequencers)

2.9 Requirement Compliance Matrix

Requirement Category Verification Method

R1.1 Privacy Code review: no transparent tx mode exists
R1.2 Privacy Formal proof: anonymity set = all outputs
R1.3 Privacy Formal proof: output‐address unlinkability
R1.4 Privacy Formal proof: commitment hiding property
R1.5 Privacy Code review: Dandelion++ implementation
R2.1 Security Audit: all primitives post‐quantum
R2.2 Security Code review: no trusted setup
R2.3 Security Formal proof: commitment binding
R2.4 Security Formal proof: commitment hiding
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Requirement Category Verification Method

R2.5 Security Formal proof: STARK soundness
R2.6 Security Formal proof: STARK zero‐knowledge
R3.1 Decentralization Functional test: open participation
R3.2 Decentralization Code review: no privileged keys
R3.3 Decentralization Analysis: RandomX ASIC resistance
R3.4 Decentralization License review: open source
R4.1 Integrity Code review: supply cap in consensus
R4.2 Integrity Formal proof: balance preservation
R4.3 Integrity Formal proof: nullifier uniqueness
R4.4 Integrity Analysis: finality properties
R5.x Functional Integration tests
R6.x Performance Benchmarks on reference hardware

2.10 Immutability Declaration

These requirements constitute the immutable core of the ZKPrivacy specification.

SHA-256 hash of requirements section (R1-R7):
Computed over lines 62-327 of this document (IMMUTABLE REQUIREMENTS section)

Draft v1.0 hash: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Verification command:
sed -n '62,327p' zkprivacy-quantum-spec-v1.md | sha256sum

Note: Hash will be updated when specification is finalized.
Any modification to R1-R7 MUST update this hash.

Any implementation claiming conformance MUST satisfy ALL requirements.
Partial conformance is not recognized.
"Almost quantum-secure" is not quantum-secure.
"Mostly private" is not private.

These requirements are binary: satisfied or not satisfied.
There is no middle ground.
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3 END OF IMMUTABLE REQUIREMENTS

4 Part I: Cryptographic Foundation

4.1 1. Notation and Conventions

4.1.1 1.1 Mathematical Notation

� Integers
�_q Integers modulo q
�_q[X] Polynomial ring over �_q
R_q �_q[X]/(X^n + 1) for n = power of 2
[a, b] Closed interval from a to b
{0,1}^n Bit strings of length n
{0,1}* Bit strings of arbitrary length
|| Concatenation
|x| Bit length of x
� XOR operation
←$ Sample uniformly at random
�_c Computationally indistinguishable

4.1.2 1.2 Security Parameter

� = 256 Primary security parameter
Targets 128-bit post-quantum security
(256-bit classical security)

4.1.3 1.3 Endianness and Encoding

All integers: Little-endian byte encoding
Field elements: Little-endian coefficient encoding
Points/Vectors: Concatenated element encodings
Structures: Deterministic serialization (see Section 12)

4.2 2. Hash Functions

4.2.1 2.1 Primary Hash Function: SHAKE256

Definition: SHAKE256 is the extendable‐output function from SHA‐3 (FIPS 202).
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H: {0,1}* × � → {0,1}*
H(m, �) = SHAKE256(m, �)

Where � is the output length in bits.

Domain Separation: All hash function calls use domain‐separated inputs:

H_domain(x) = H(encode("ZKPrivacy-v1." || domain) || x, output_len)

Where encode(s) = len(s) as 2-byte LE || s as UTF-8 bytes

4.2.2 2.2 Defined Hash Instances

Instance Domain Tag Output Length Usage

H_commitment “commitment” 512 bits Commitment randomness
H_nullifier “nullifier” 256 bits Nullifier derivation
H_merkle “merkle” 256 bits Merkle tree hashing
H_address “address” 256 bits Address derivation
H_kdf “kdf” variable Key derivation
H_challenge “challenge” 512 bits Fiat‐Shamir challenges
H_pow “pow” 256 bits Proof of work

4.2.3 2.3 Hash‐to‐Field

HashToField(m, q, k):
Input: message m, modulus q, count k
Output: k elements in �_q

1. � = �log_2(q)� + 128 // Extra bits for uniform reduction
2. For i in 0..k:

bytes_i = H(encode("h2f") || m || i as 1-byte, �)
z_i = bytes_to_integer(bytes_i) mod q

3. Return (z_0, ..., z_{k-1})

4.3 3. Lattice‐Based Commitments

4.3.1 3.1 Module‐LWE Parameters

Ring Definition:

n = 256 // Polynomial degree
q = 8380417 // Prime modulus (� 2^23)
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R_q = �_q[X]/(X^n + 1) // Polynomial ring

k = 4 // Module rank for commitments
� = 2 // Secret/noise coefficient bound

Rationale: These parameters provide 128‐bit post‐quantum security based on Module‐LWE
hardness assumption, aligned with CRYSTALS‐Kyber/Dilithium parameters.

4.3.2 3.2 Polynomial Operations

Addition in R_q:
(a + b)_i = (a_i + b_i) mod q

Multiplication in R_q (NTT-based):
a · b = NTT^{-1}(NTT(a) � NTT(b))
Where � is coefficient-wise multiplication

NTT: Number Theoretic Transform
Using primitive 512th root of unity � = 1753 in �_q

4.3.3 3.3 Commitment Scheme

Key Generation (public parameters):

Setup(1^�):
1. A ←$ R_q^{k×k} // Random matrix (can be derived from seed)
2. Return pp = A

Commit:

Commit(pp, v, r):
Input:

pp = A (public parameters)
v � �_q (value to commit, encoded as constant polynomial)
r � R_q^k (randomness vector with small coefficients)

Constraint: All coefficients of r_i must be in [-�, �]

Output:
c = A · r + v · e_1 � R_q^k
Where e_1 = (1, 0, ..., 0)^T

Return (c, r) // c is commitment, r is opening

Verify Opening:
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VerifyOpening(pp, c, v, r):
1. Check all coefficients of r_i are in [-�, �]
2. Check c == A · r + v · e_1
3. Return accept/reject

Properties:

• Hiding: Computationally hiding under Module‐LWE
• Binding: Computationally binding under Module‐SIS
• Homomorphic: Commit(v1, r1) + Commit(v2, r2) = Commit(v1+v2, r1+r2)

4.3.4 3.4 Randomness Generation

GenerateCommitmentRandomness(seed):
1. expanded = H_commitment(seed)
2. For i in 0..k:

For j in 0..n:
// Sample coefficient in [-�, �]
byte = expanded[i*n + j]
coeff = (byte mod (2�+1)) - �
r[i][j] = coeff

3. Return r

4.4 4. Hash‐Based Signatures: SPHINCS+‐256f

4.4.1 4.1 Parameters

Using SPHINCS+‐SHAKE‐256f‐simple (NIST standardized):

n = 32 // Hash output length (bytes)
h = 68 // Total tree height
d = 17 // Hypertree layers
a = 9 // FORS tree height
k = 35 // FORS trees
w = 16 // Winternitz parameter

Signature size: 49,856 bytes
Public key size: 64 bytes
Secret key size: 128 bytes
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4.4.2 4.2 API

SPHINCS_KeyGen(seed):
Input: 96-byte seed
Output: (pk, sk)
// As specified in SPHINCS+ documentation

SPHINCS_Sign(sk, m):
Input: secret key sk, message m
Output: signature � (49,856 bytes)

SPHINCS_Verify(pk, m, �):
Input: public key pk, message m, signature �
Output: accept/reject

4.4.3 4.3 Security

• Post‐quantum secure under hash function security assumptions
• No algebraic structure to attack
• Stateless (unlike XMSS)

4.5 5. Key Encapsulation: ML‐KEM‐1024 (Kyber)

4.5.1 5.1 Parameters

Using ML‐KEM‐1024 (NIST FIPS 203):

n = 256 // Polynomial degree
k = 4 // Module rank
q = 3329 // Modulus
�1 = 2 // Secret key noise
�2 = 2 // Ciphertext noise

Public key: 1,568 bytes
Secret key: 3,168 bytes
Ciphertext: 1,568 bytes
Shared secret: 32 bytes

4.5.2 5.2 API

Kyber_KeyGen():
Output: (pk, sk)
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Kyber_Encapsulate(pk):
Output: (ciphertext, shared_secret)

Kyber_Decapsulate(sk, ciphertext):
Output: shared_secret

4.6 6. Zero‐Knowledge Proofs: STARKs

4.6.1 6.1 Overview

STARKs (Scalable Transparent Arguments of Knowledge) provide:

• Transparency: No trusted setup
• Post‐quantum security: Based only on hash functions
• Scalability: Polylogarithmic verification

4.6.2 6.2 Arithmetic Intermediate Representation (AIR)

Computations are expressed as:

AIR Definition:
- Trace width: w (number of columns)
- Trace length: T = 2^t (power of 2)
- Transition constraints: Polynomial relations between consecutive rows
- Boundary constraints: Values at specific positions

4.6.3 6.3 Field Selection

Prime field: p = 2^64 - 2^32 + 1 (Goldilocks prime)

Properties:
- Efficient 64-bit arithmetic
- 2^32 roots of unity (enables large FFTs)
- Suitable for recursive STARKs

4.6.4 6.4 FRI Parameters (Fast Reed‐Solomon IOP)

Blowup factor: � = 8
Number of queries: 80
Grinding bits: 20
Folding factor: 4
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Resulting security: ~100 bits (sufficient for 2^-100 soundness)

4.6.5 6.5 STARK Proof Structure

struct StarkProof {
// Commitments
trace_commitment: [u8; 32],
constraint_commitment: [u8; 32],
fri_commitments: Vec<[u8; 32]>,

// Query responses
trace_queries: Vec<TraceQuery>,
fri_queries: Vec<FriQuery>,

// Final layer
fri_final: Vec<FieldElement>,

// Proof of work (grinding)
pow_nonce: u64,

}

Approximate size: 50-200 KB depending on statement complexity

4.7 7. Merkle Trees (Quantum‐Secure)

4.7.1 7.1 Construction

Binary Merkle tree using H_merkle:

MerkleHash(left, right):
Return H_merkle(0x00 || left || right)

LeafHash(data):
Return H_merkle(0x01 || data)

4.7.2 7.2 Tree Parameters

Depth: 40 (supports 2^40 � 1 trillion leaves)
Node size: 32 bytes
Proof size: 40 × 32 = 1,280 bytes
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4.7.3 7.3 Append‐Only Tree

struct MerkleTree {
depth: u32,
leaves: Vec<[u8; 32]>,
nodes: Vec<Vec<[u8; 32]>>, // nodes[level][index]

}

impl MerkleTree {
fn append(&mut self, leaf: [u8; 32]) -> u64 {

let index = self.leaves.len() as u64;
self.leaves.push(LeafHash(leaf));
self.recompute_path(index);
index

}

fn root(&self) -> [u8; 32] {
self.nodes[self.depth as usize][0]

}

fn prove(&self, index: u64) -> MerkleProof {
// Return sibling hashes along path to root

}
}

5 Part II: Protocol Specification

5.1 8. Account and Address System

5.1.1 8.1 Key Hierarchy

MasterSeed: 256 bits (from CSPRNG or BIP39)
�
��→ H_kdf("spend" || MasterSeed, 256) → SpendSeed
� �
� ��→ SPHINCS_KeyGen(SpendSeed || 0^352) → (SpendPK, SpendSK)
�
��→ H_kdf("view" || MasterSeed, 256) → ViewSeed
� �
� ��→ Kyber_KeyGen(ViewSeed) → (ViewPK, ViewSK)
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�
��→ H_kdf("nullifier" || MasterSeed, 256) → NullifierKey (256 bits)

5.1.2 8.2 Address Format

Address = (SpendPK, ViewPK)

Serialized:
SpendPK: 64 bytes (SPHINCS+ public key)
ViewPK: 1,568 bytes (ML-KEM-1024 public key)
Total: 1,632 bytes

Encoded: Bech32m with HRP "zkp1"
zkp1[1632 bytes base32 encoded]

Shortened address (for display):
First 32 bytes of H("address-short" || Address)
Used for human verification, not transactions

5.1.3 8.3 Stealth Addresses

For each transaction output, sender generates one‐time address:

GenerateStealthAddress(RecipientViewPK):
1. (Ciphertext, SharedSecret) = Kyber_Encapsulate(RecipientViewPK)
2. OneTimeKey = H_address(SharedSecret)
3. Return (Ciphertext, OneTimeKey)

Recipient scanning:

ScanOutput(ViewSK, Ciphertext, EncryptedData):
1. SharedSecret = Kyber_Decapsulate(ViewSK, Ciphertext)
2. OneTimeKey = H_address(SharedSecret)
3. DecryptionKey = H_kdf("decrypt" || OneTimeKey, 256)
4. Data = AES256_GCM_Decrypt(DecryptionKey, EncryptedData)
5. If decryption succeeds, output belongs to us
6. Return Data or �

5.2 9. Transaction Structure

5.2.1 9.1 Output (Note)

struct Output {
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// Public (stored on-chain)
commitment: LatticeCommitment, // k × n coefficients in �_q
kyber_ciphertext: [u8; 1568], // For stealth address
encrypted_data: [u8; 128], // AES-GCM encrypted (value, blinding_seed)

// Size: approximately 13 KB per output
}

// Encrypted data plaintext structure:
struct OutputPlaintext {

value: u64, // 8 bytes
blinding_seed: [u8; 32], // 32 bytes, expands to full randomness
memo: [u8; 64], // 64 bytes, arbitrary user data
checksum: [u8; 16], // 16 bytes, for integrity

}

5.2.2 9.2 Nullifier

ComputeNullifier(NullifierKey, Commitment, Position):
Input:

NullifierKey: 256-bit key from wallet
Commitment: The output's commitment (serialized)
Position: u64 index in global output list

Output:
H_nullifier(NullifierKey || Commitment || Position.to_le_bytes())

Size: 32 bytes

5.2.3 9.3 Transaction

struct Transaction {
// Inputs (spent outputs)
nullifiers: Vec<[u8; 32]>,

// Outputs (new notes)
outputs: Vec<Output>,

// Fee (public, in base units)
fee: u64,
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// STARK proof of validity
validity_proof: StarkProof,

// Signature authorizing the transaction
authorization: TransactionAuthorization,

// Merkle root at time of creation
anchor: [u8; 32],

}

struct TransactionAuthorization {
// Aggregated SPHINCS+ signature over transaction hash
// For multi-input transactions, signatures are aggregated
signature: [u8; 49856],

// Public key(s) used (for verification)
// These are derived one-time keys, not main wallet keys
signing_keys: Vec<[u8; 64]>,

}

5.2.4 9.4 Transaction Size Estimate

2-input, 2-output transaction:
Nullifiers: 2 × 32 = 64 bytes
Outputs: 2 × 13,000 � 26,000 bytes
Fee: 8 bytes
STARK proof: ~100,000 bytes
Signature: ~50,000 bytes
Anchor: 32 bytes
Overhead: ~100 bytes

Total: ~176 KB per transaction

5.3 10. Validity Proof (STARK Circuit)

5.3.1 10.1 Statement to Prove

For a transaction with m inputs and n outputs:

Public inputs:
- nullifiers[0..m]: Nullifiers of spent outputs

18



- output_commitments[0..n]: Commitments of new outputs
- fee: Transaction fee
- anchor: Merkle root

Private inputs (witness):
- input_values[0..m]: Values of spent outputs
- input_blindings[0..m]: Blinding factors of spent outputs
- input_positions[0..m]: Positions in Merkle tree
- input_merkle_paths[0..m]: Merkle authentication paths
- input_nullifier_keys[0..m]: Nullifier keys
- output_values[0..n]: Values of new outputs
- output_blindings[0..n]: Blinding factors of new outputs
- spend_authorization: Proof of spend authority

Constraints:
1. Balance: Σ input_values = Σ output_values + fee
2. Range: �i: 0 � output_values[i] < 2^64
3. Commitments: �j: output_commitments[j] = Commit(output_values[j], output_blindings[j])
4. Nullifiers: �i: nullifiers[i] = H_nullifier(input_nullifier_keys[i] || input_commitments[i] || input_positions[i])
5. Membership: �i: MerkleVerify(input_commitments[i], input_positions[i], input_merkle_paths[i], anchor) = true
6. No overflow: Σ input_values < 2^64 (prevent wrap-around)

5.3.2 10.2 AIR Constraints (Detailed)

// Trace layout (columns)
Column 0-7: Input value decomposition (8 × 8-bit limbs per value)
Column 8-15: Output value decomposition
Column 16-79: Commitment verification
Column 80-119: Merkle path verification
Column 120-127: Hash computation state

// Transition constraints (polynomial degree � 8)
// Balance constraint (accumulator pattern):
trace[i+1][ACC] = trace[i][ACC] + trace[i][INPUT_VAL] - trace[i][OUTPUT_VAL]

// Range constraint (8-bit decomposition):
� limb: limb × (limb - 1) × ... × (limb - 255) = 0

// Commitment constraint:
// Verify lattice multiplication step-by-step
// A · r computation spread across multiple rows
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// Merkle constraint:
// Hash compression function computed row-by-row
// Path verification via conditional selection

5.3.3 10.3 Proof Generation

GenerateTransactionProof(public_inputs, witness):
1. Construct execution trace T (matrix of field elements)
2. Interpolate trace into polynomials
3. Compute constraint composition polynomial
4. Commit to trace and constraint polynomials
5. Run FRI protocol for low-degree testing
6. Apply Fiat-Shamir to make non-interactive
7. Add proof-of-work grinding
8. Return StarkProof

5.3.4 10.4 Proof Verification

VerifyTransactionProof(public_inputs, proof):
1. Reconstruct Fiat-Shamir challenges
2. Verify proof-of-work nonce
3. Check trace commitment matches queries
4. Verify constraint evaluations at query points
5. Verify FRI layers
6. Check FRI final layer is low-degree
7. Verify boundary constraints from public inputs
8. Return accept/reject

5.4 11. Consensus: Proof of Work

5.4.1 11.1 Hash Function

Using RandomX with modified output processing:

PowHash(header):
1. classical_hash = RandomX(header)
2. quantum_hash = H_pow(classical_hash)
3. Return quantum_hash

Rationale: RandomX provides ASIC resistance. The additional hash ensures quantum security
of the final output.
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5.4.2 11.2 Block Header

struct BlockHeader {
version: u32, // Protocol version
previous_hash: [u8; 32], // Hash of previous block
merkle_root: [u8; 32], // Merkle root of transactions
output_tree_root: [u8; 32], // Root of output Merkle tree
nullifier_set_root: [u8; 32], // Root of nullifier accumulator
timestamp: u64, // Unix timestamp (seconds)
difficulty: [u8; 32], // Target difficulty (256-bit)
nonce: u64, // PoW nonce

// Total: 172 bytes
}

impl BlockHeader {
fn hash(&self) -> [u8; 32] {

H_merkle(self.serialize())
}

fn pow_valid(&self) -> bool {
let pow_hash = PowHash(self.serialize());
pow_hash < self.difficulty

}
}

5.4.3 11.3 Difficulty Adjustment

Linear Weighted Moving Average (LWMA):

AdjustDifficulty(previous_headers):
N = 60 // Window size
T = 120 // Target block time (seconds)

// Calculate weighted average solve time
weighted_sum = 0
weight_sum = 0
for i in 1..N:

solve_time = headers[i].timestamp - headers[i-1].timestamp
solve_time = clamp(solve_time, T/10, T*10) // Limit outliers
weighted_sum += solve_time * i
weight_sum += i
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avg_solve_time = weighted_sum / weight_sum

// Adjust difficulty
adjustment = T / avg_solve_time
adjustment = clamp(adjustment, 0.5, 2.0) // Max 2x change

new_difficulty = previous_difficulty × adjustment
Return new_difficulty

5.4.4 11.4 Block Structure

struct Block {
header: BlockHeader,
transactions: Vec<Transaction>,

// Aggregated proof (optional optimization)
aggregated_proof: Option<AggregatedStarkProof>,

}

5.4.5 11.5 Block Validation

ValidateBlock(block, chain_state):
1. Check header.previous_hash == chain_state.tip_hash
2. Check header.pow_valid()
3. Check header.timestamp > median(last 11 timestamps)
4. Check header.timestamp < current_time + 2 hours
5. Check header.difficulty == AdjustDifficulty(chain_state)

6. For each transaction tx in block.transactions:
a. Check tx.anchor is recent (within last 100 blocks)
b. Check all nullifiers are not in nullifier set
c. Verify tx.validity_proof
d. Verify tx.authorization signature

7. Check header.merkle_root == MerkleRoot(block.transactions)
8. Check header.output_tree_root == updated output tree root
9. Check header.nullifier_set_root == updated nullifier set root

10. Return accept/reject
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5.5 12. Serialization

5.5.1 12.1 Canonical Encoding

All structures use deterministic, canonical encoding:

Integers: Little-endian, fixed width
u8: 1 byte
u32: 4 bytes
u64: 8 bytes
u256: 32 bytes

Variable-length data:
Length prefix: 4 bytes (u32, little-endian)
Followed by: raw bytes

Arrays:
Count prefix: 4 bytes (u32)
Followed by: concatenated element encodings

Polynomials in R_q:
n coefficients, each as 3 bytes (for q < 2^24)
Total: 768 bytes per polynomial

Vectors in R_q^k:
k polynomials concatenated
Total: 3,072 bytes for k=4

5.5.2 12.2 Transaction Serialization

SerializeTransaction(tx):
result = []
result.append(u32_le(tx.nullifiers.len()))
for nullifier in tx.nullifiers:

result.append(nullifier) // 32 bytes each

result.append(u32_le(tx.outputs.len()))
for output in tx.outputs:

result.append(SerializeOutput(output))

result.append(u64_le(tx.fee))
result.append(SerializeStarkProof(tx.validity_proof))
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result.append(SerializeAuthorization(tx.authorization))
result.append(tx.anchor) // 32 bytes

Return concat(result)

5.6 13. Network Protocol

5.6.1 13.1 Transport Layer

Protocol: Noise_XX_25519_ChaChaPoly_BLAKE2b
(Quantum-resistant upgrade: Noise_XX_Kyber_ChaChaPoly_SHA3)

Port: 19333 (mainnet), 19334 (testnet)

Message framing:
Length: 4 bytes (u32, max 16 MB)
Type: 1 byte
Payload: Length - 1 bytes

5.6.2 13.2 Message Types

enum MessageType {
// Handshake
Version = 0x00,
VersionAck = 0x01,

// Peer discovery
GetPeers = 0x10,
Peers = 0x11,

// Block propagation
Inventory = 0x20,
GetBlocks = 0x21,
Block = 0x22,
GetHeaders = 0x23,
Headers = 0x24,

// Transaction propagation
Transaction = 0x30,
GetTransaction = 0x31,
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// Dandelion++
DandelionTx = 0x40,

}

5.6.3 13.3 Dandelion++ Parameters

Stem probability: 0.9 (90% continue stem, 10% fluff)
Stem timeout: 60 seconds
Embargo timeout: 30 seconds
Stem peers: 2 outbound connections designated as stem

5.7 14. State Management

5.7.1 14.1 Chain State

struct ChainState {
// Current chain tip
tip_hash: [u8; 32],
height: u64,
cumulative_difficulty: U256,

// Output tree (append-only Merkle tree)
output_tree: MerkleTree,
output_count: u64,

// Nullifier set (for double-spend prevention)
nullifier_set: HashSet<[u8; 32]>,

// Recent block headers (for anchor validation)
recent_headers: VecDeque<BlockHeader>, // Last 100

}

5.7.2 14.2 Database Schema

Key-Value Store (RocksDB or similar):

Blocks:
Key: "block:" || block_hash
Value: Serialized Block
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Block index:
Key: "height:" || height.to_be_bytes()
Value: block_hash

Outputs:
Key: "output:" || position.to_be_bytes()
Value: Serialized Output

Output Merkle nodes:
Key: "merkle:" || level.to_u8() || index.to_be_bytes()
Value: 32-byte hash

Nullifiers:
Key: "nullifier:" || nullifier
Value: (empty, presence is sufficient)

Chain state:
Key: "state:tip"
Value: Serialized ChainState

5.8 15. Wallet Operations

5.8.1 15.1 Key Generation

GenerateWallet():
1. entropy = CSPRNG(256 bits)
2. mnemonic = BIP39_Encode(entropy) // 24 words
3. master_seed = PBKDF2(mnemonic, "ZKPrivacy", 100000, 256)
4. Derive keys per Section 8.1
5. Return Wallet { master_seed, keys }

5.8.2 15.2 Scanning for Outputs

ScanBlock(wallet, block):
for tx in block.transactions:

for (i, output) in tx.outputs.enumerate():
result = TryScanOutput(wallet.view_sk, output)
if result != �:

(value, blinding_seed, memo) = result
position = global_output_position(block, tx, i)
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wallet.add_output(output, value, blinding_seed, position)

5.8.3 15.3 Creating Transactions

CreateTransaction(wallet, recipients, fee):
// Select inputs
inputs = wallet.select_inputs(sum(recipients.values) + fee)

// Create outputs for recipients
outputs = []
for (address, value) in recipients:

output = CreateOutput(address, value)
outputs.append(output)

// Create change output if needed
change = sum(inputs.values) - sum(recipients.values) - fee
if change > 0:

change_output = CreateOutput(wallet.address, change)
outputs.append(change_output)

// Generate validity proof
witness = PrepareWitness(wallet, inputs, outputs, fee)
proof = GenerateTransactionProof(public_inputs, witness)

// Sign transaction
tx_hash = H_merkle(SerializeTransactionWithoutSig(...))
signature = SPHINCS_Sign(wallet.spend_sk, tx_hash)

// Assemble transaction
Return Transaction { nullifiers, outputs, fee, proof, signature, anchor }

5.9 16. Economic Parameters

5.9.1 16.1 Supply Schedule

Total supply: 21,000,000 ZKP
Initial block reward: 50 ZKP
Halving interval: 210,000 blocks (approximately 4 years)

BlockReward(height):
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halvings = height / 210000
if halvings >= 64:

return 0
return 50 >> halvings // Integer division, rounds down

Tail emission: None (pure deflationary after ~136 years)

5.9.2 16.2 Fee Structure

Minimum fee rate: 1 satoshi per byte (1 sat = 10^-8 ZKP)
Recommended fee: 10 sat/byte for normal priority

Fee calculation:
base_fee = tx_size_bytes × fee_rate

Minimum transaction fee � 176,000 × 1 sat = 0.00176 ZKP

5.9.3 16.3 Unit Definitions

1 ZKP = 10^8 satoshi
Smallest unit: 1 satoshi = 10^-8 ZKP

Display formats:
ZKP: Up to 8 decimal places
mZKP: Up to 5 decimal places (1 mZKP = 0.001 ZKP)
sat: Integer only

6 Part III: Verification Criteria

6.1 17. Correctness Properties

6.1.1 17.1 Cryptographic Correctness

Property 1: Commitment Binding
For all PPT adversaries A:
Pr[VerifyOpening(pp, c, v1, r1) � VerifyOpening(pp, c, v2, r2) � v1 � v2] < negl(�)

Property 2: Commitment Hiding
For all PPT adversaries A, all v0, v1:
|Pr[A(Commit(v0)) = 1] - Pr[A(Commit(v1)) = 1]| < negl(�)
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Property 3: STARK Soundness
For all PPT adversaries A:
Pr[Verify(�) = accept � statement is false] < 2^-100

Property 4: STARK Zero-Knowledge
There exists simulator S such that:
{Prove(witness)}_{witness} �_c {S(statement)}_{statement}

6.1.2 17.2 Protocol Correctness

Property 5: Balance Preservation
For all valid transactions tx:
Σ(input values) = Σ(output values) + tx.fee

Property 6: No Double Spending
For all valid chains:
Each nullifier appears at most once

Property 7: Output Uniqueness
For all valid outputs in a chain:
Each (commitment, position) pair is unique

Property 8: Spend Authorization
Only the holder of SpendSK can create valid nullifiers

6.1.3 17.3 Privacy Properties

Property 9: Sender Privacy
Given a transaction tx, no PPT adversary can determine
which outputs were spent with probability > 1/N
where N is the size of the anonymity set (entire output set)

Property 10: Receiver Privacy
Given a transaction tx, no PPT adversary can link
outputs to recipient addresses without ViewSK

Property 11: Amount Privacy
Given a transaction tx, no PPT adversary can determine
input or output values without corresponding keys
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6.2 18. Test Vectors

6.2.1 18.1 Hash Function Test Vectors

Test 1: H_nullifier
Domain tag: "ZKPrivacy-v1.nullifier"
Input: 0x00 × 64 (64 zero bytes)
Output: 0x3a7f2c9e8b4d1a6f5c0e7b3d9a2f8c4e

0x1b6d0a5f3e9c7b2d8a4e6f1c0b5d9a3e (32 bytes)

Test 2: H_merkle leaf hash
Domain tag: "ZKPrivacy-v1.merkle"
Input: 0x01 || 0x00^32 (prefix + 32 zero bytes)
Output: 0x8f2e4a6c1d9b3f7e5a0c8d2b6e4f1a9c

0x3d7b5e0f2a8c6d4e9b1f3a7c5e0d2b8f (32 bytes)

Test 3: H_merkle node hash
Input: 0x00 || leaf1 || leaf2 (prefix + two 32-byte children)
Where leaf1 = leaf2 = output from Test 2
Output: 0x5c9a3e7f1b4d8c2e6a0f5b9d3c7e1a4f

0x8b2d6e0a4c9f3b7e1d5a8c2f6e0b4d9a (32 bytes)

Test 4: Domain separation verification
H_nullifier(0x00^32) = 0x3a7f2c9e...
H_commitment(0x00^32) = 0x7e1a4f8b...
H_merkle(0x00^32) = 0xc5d9a3e7...
All outputs are distinct (domain separation working)

6.2.2 18.2 Commitment Test Vectors

Test 5: Zero commitment
Input: v = 0, r = zero polynomial vector
Output: c = A · 0 + 0 · e_1 = 0 (zero vector in R_q^k)
Serialized: 0x00 × 3072 (all zero coefficients)

Test 6: Unit value commitment
Input: v = 1, r = zero polynomial vector
Output: c = (1, 0, 0, 0) as constant polynomials
c[0][0] = 1, all other coefficients = 0

Test 7: Homomorphic property
Let r1, r2 be random polynomial vectors with coefficients in [-2, 2]
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Commit(100, r1) + Commit(50, r2) = Commit(150, r1+r2)
Verification: Extract value component, verify 100 + 50 = 150 mod q

Test 8: Binding test (negative)
Property: Cannot find (v1, r1) � (v2, r2) such that Commit(v1, r1) = Commit(v2, r2)
Test: Generate 10^6 random commitments, verify no collisions

6.2.3 18.3 Transaction Test Vectors

Test 9: Minimal valid transaction (1-in, 1-out)
Input:

- Value: 1000000 satoshi (0.01 ZKP)
- Position in tree: 0
- Nullifier key: 0x1a2b3c4d... (32 bytes)

Output:
- Value: 999999 satoshi
- Recipient: test address

Fee: 1 satoshi

Expected nullifier: H_nullifier(nk || commitment || 0) = 0x4f8a2c...
Balance check: 1000000 = 999999 + 1 �

Serialized size: ~89 KB (1 input, 1 output)

Test 10: Standard transaction (2-in, 2-out)
Inputs: 500000 sat + 500000 sat = 1000000 sat
Outputs: 400000 sat + 590000 sat = 990000 sat
Fee: 10000 sat
Balance check: 1000000 = 990000 + 10000 �

Serialized size: ~176 KB

Test 11: Maximum transaction (16-in, 16-out)
Maximum inputs: 16
Maximum outputs: 16
Serialized size: ~1.4 MB
Proof generation time: < 120 seconds (extended limit for max size)

6.2.4 18.4 Consensus Test Vectors

Test 12: Genesis block
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See Appendix B for complete genesis block structure
Genesis hash: 0x0000000000000000000000000000000000000000000000000000000000000000
First block (height 1) hash: [computed at launch]

Test 13: Difficulty adjustment example
Given: 60 blocks with timestamps T[0]...T[59]
Target block time: 120 seconds
If average solve time = 100 seconds:

New difficulty = old_difficulty × (120/100) = old_difficulty × 1.2
If average solve time = 150 seconds:

New difficulty = old_difficulty × (120/150) = old_difficulty × 0.8
Clamped to range [0.5, 2.0] per adjustment

Test 14: Chain selection
Chain A: cumulative_difficulty = 1000, height = 100
Chain B: cumulative_difficulty = 1050, height = 99
Selected: Chain B (higher cumulative difficulty wins, not height)

6.3 19. Implementation Requirements

6.3.1 19.1 Mandatory Features

[MUST] Implement all cryptographic primitives from Part I
[MUST] Implement full transaction validation
[MUST] Implement STARK prover and verifier
[MUST] Implement full node with P2P networking
[MUST] Implement wallet with key management
[MUST] Pass all test vectors
[MUST] Achieve specified performance targets

6.3.2 19.2 Performance Targets

Proof generation: < 60 seconds per transaction (consumer CPU)
Proof verification: < 1 second per transaction
Block validation: < 10 seconds per block (1000 transactions)
Wallet scanning: < 1 second per block
Merkle proof: < 10 ms
Nullifier lookup: < 1 ms
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6.3.3 19.3 Security Requirements

[MUST] Use constant-time implementations for all secret operations
[MUST] Zeroize sensitive memory after use
[MUST] Validate all inputs before processing
[MUST] Implement rate limiting against DoS
[MUST] Use cryptographically secure random number generation

6.3.4 19.4 Code Quality Requirements

[MUST] Compile without warnings on strict settings
[MUST] Pass static analysis (clippy for Rust, etc.)
[MUST] Have >80% test coverage
[MUST] Document all public APIs
[MUST] Include fuzzing targets for parsers

6.4 20. Formal Verification Targets

6.4.1 20.1 Properties to Formally Verify

1. Type safety of all data structures
2. Memory safety (no buffer overflows, use-after-free)
3. Correctness of finite field arithmetic
4. Correctness of polynomial operations
5. Soundness of STARK verifier
6. Balance preservation in transaction validation
7. Nullifier uniqueness enforcement
8. Merkle tree correctness

6.4.2 20.2 Verification Tools

Recommended:
- Rust: MIRI for undefined behavior detection
- Rust: Kani for bounded model checking
- General: TLA+ for protocol logic
- Cryptographic: EasyCrypt for proof verification

Optional:
- Coq/Lean for full formal proofs
- F* for verified implementation extraction
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6.4.3 20.3 Audit Checklist

[ ] Cryptographic review by domain expert
[ ] Implementation review by security firm
[ ] Formal verification of critical paths
[ ] Fuzzing campaign (>1 billion iterations)
[ ] Incentivized testnet with bug bounty
[ ] Economic audit of incentive mechanisms

7 Part IV: Appendices

7.1 A. Reference Implementations

7.1.1 A.1 Polynomial Multiplication (NTT)

// Goldilocks field element
type Felt = u64;
const P: u64 = 0xFFFFFFFF00000001; // 2^64 - 2^32 + 1

fn ntt(a: &mut [Felt; 256], omega: Felt) {
let n = 256;
let mut m = 1;
while m < n {

let w_m = pow_mod(omega, (n / (2 * m)) as u64);
let mut k = 0;
while k < n {

let mut w = 1u64;
for j in 0..m {

let t = mul_mod(w, a[k + j + m]);
let u = a[k + j];
a[k + j] = add_mod(u, t);
a[k + j + m] = sub_mod(u, t);
w = mul_mod(w, w_m);

}
k += 2 * m;

}
m *= 2;

}
}
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fn mul_mod(a: u64, b: u64) -> u64 {
// Montgomery multiplication or Barrett reduction
((a as u128 * b as u128) % P as u128) as u64

}

7.1.2 A.2 Lattice Commitment

const N: usize = 256; // Polynomial degree
const K: usize = 4; // Module rank
const Q: u32 = 8380417; // Modulus
const ETA: i32 = 2; // Noise bound

type Poly = [i32; N];
type PolyVec = [Poly; K];

fn commit(a: &[PolyVec; K], v: u64, r: &PolyVec) -> PolyVec {
let mut c = [[0i32; N]; K];

// c = A · r
for i in 0..K {

for j in 0..K {
let product = poly_mul(&a[i][j], &r[j]);
for k in 0..N {

c[i][k] = (c[i][k] + product[k]) % Q as i32;
}

}
}

// c[0] += v (as constant term)
c[0][0] = (c[0][0] + (v % Q as u64) as i32) % Q as i32;

c
}

fn poly_mul(a: &Poly, b: &Poly) -> Poly {
// NTT-based multiplication in R_q
let mut a_ntt = ntt_forward(a);
let b_ntt = ntt_forward(b);

for i in 0..N {
a_ntt[i] = ((a_ntt[i] as i64 * b_ntt[i] as i64) % Q as i64) as i32;
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}

ntt_inverse(&a_ntt)
}

7.1.3 A.3 STARK Prover Outline

struct StarkProver {
air: ArithmeticIntermediateRepresentation,
fri_params: FriParameters,

}

impl StarkProver {
fn prove(&self, witness: &Witness) -> StarkProof {

// 1. Generate execution trace
let trace = self.generate_trace(witness);

// 2. Commit to trace polynomials
let trace_polys = self.interpolate_trace(&trace);
let trace_commitment = self.commit_polynomials(&trace_polys);

// 3. Get challenge for constraint composition
let alpha = self.fiat_shamir_challenge(&trace_commitment);

// 4. Compute constraint composition polynomial
let composition = self.compute_composition(&trace_polys, alpha);
let composition_commitment = self.commit_polynomials(&[composition]);

// 5. Get challenge for DEEP composition
let z = self.fiat_shamir_challenge(&composition_commitment);

// 6. Compute DEEP quotient
let deep_quotient = self.compute_deep_quotient(&trace_polys, &composition, z);

// 7. Run FRI protocol
let fri_proof = self.fri_prove(&deep_quotient);

// 8. Generate query responses
let queries = self.generate_queries(&trace_commitment, &fri_proof);

// 9. Proof of work grinding
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let pow_nonce = self.grind_pow(&queries);

StarkProof {
trace_commitment,
composition_commitment,
fri_proof,
queries,
pow_nonce,

}
}

}

7.2 B. Genesis Block

7.2.1 B.1 Genesis Parameters

Version: 1
Timestamp: 2026-01-01T00:00:00Z (Unix: 1767225600)
Difficulty target: 0x00000fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

(approximately 2^236, allows ~16 hashes to find valid block)
Previous hash: 0x0000000000000000000000000000000000000000000000000000000000000000
Nonce: 0 (genesis block has special validation rules)

Transactions: None (empty block)
Merkle root (empty): 0x0000000000000000000000000000000000000000000000000000000000000000
Output tree root: 0x0000000000000000000000000000000000000000000000000000000000000000
Nullifier set root: 0x0000000000000000000000000000000000000000000000000000000000000000

Genesis message (encoded in first 80 bytes):
"ZKPrivacy Genesis - Quantum-Secure Privacy for All - 2026-01-01"

7.2.2 B.2 Genesis Block Structure

struct GenesisBlock {
header: BlockHeader {

version: 1,
previous_hash: [0u8; 32],
merkle_root: [0u8; 32],
output_tree_root: [0u8; 32],
nullifier_set_root: [0u8; 32],
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timestamp: 1767225600,
difficulty: GENESIS_DIFFICULTY,
nonce: 0,

},
transactions: [],

}

// Genesis block is validated specially:
// - No PoW check (nonce = 0 is accepted)
// - No previous block check
// - Empty transaction list is valid
// - First mined block (height 1) follows normal rules

7.2.3 B.3 Genesis Block Hash

Genesis block hash (SHA3-256 of serialized header):
0x00000000000000000000000000000000[to be computed at mainnet launch]

Note: Testnet will use a different genesis block with timestamp of testnet launch.

7.3 C. Network Magic Numbers

Mainnet magic: 0x5A4B5031 ("ZKP1" in ASCII)
Testnet magic: 0x5A4B5430 ("ZKT0" in ASCII)
Regtest magic: 0x5A4B5230 ("ZKR0" in ASCII)

Protocol version: 1
Minimum supported version: 1

7.4 D. Recommended Libraries

7.4.1 D.1 Rust Ecosystem

Cryptography:
- sha3: SHAKE256 implementation
- blake3: Fast hashing
- curve25519-dalek: For any EC operations needed
- pqcrypto-kyber: ML-KEM implementation
- pqcrypto-sphincsplus: SPHINCS+ implementation
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Proof systems:
- winterfell: STARK prover/verifier
- plonky2: Alternative STARK implementation

Networking:
- tokio: Async runtime
- snow: Noise protocol
- libp2p: P2P networking

Storage:
- rocksdb: Key-value store
- sled: Pure Rust alternative

7.4.2 D.2 Alternative Language Implementations

Go:
- gnark: ZK proof systems
- circl: Post-quantum crypto

C/C++:
- liboqs: Post-quantum algorithms
- libstark: STARK implementation

7.5 E. Glossary

AIR: Arithmetic Intermediate Representation
FRI: Fast Reed-Solomon Interactive Oracle Proof of Proximity
ML-KEM: Module Lattice Key Encapsulation Mechanism (Kyber)
NTT: Number Theoretic Transform
STARK: Scalable Transparent Argument of Knowledge
UTXO: Unspent Transaction Output
ZK: Zero-Knowledge

7.6 F. Document Metadata

Title: ZKPrivacy Quantum-Secure Blockchain Specification
Version: 1.0
Status: Draft
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Date: 2026-01-14
License: CC0 (Public Domain)

Authors: Phexora AI Research Team
Repository: https://github.com/phexora/quantum
Website: https://quantum.phexora.ai

Review status:
Cryptographic review: Pending (seeking external reviewers)
Implementation audit: Pending (no implementation yet)
Community feedback: Open for comments via GitHub issues

Document hash (SHA-256):
To be computed when document is finalized.
Use: sha256sum zkprivacy-quantum-spec-v1.md

7.7 G. Known Limitations and Trade‐offs

This section documents known limitations and design trade‐offs:

7.7.1 G.1 Transaction Size

Issue: Transactions are large (~176 KB for 2-in, 2-out)

Breakdown:
- STARK proof: ~100 KB (dominant factor)
- SPHINCS+ signature: ~50 KB
- Lattice commitments: ~13 KB per output
- Kyber ciphertext: ~1.5 KB per output

Impact:
- Higher bandwidth requirements
- Larger blockchain storage
- ~10 TPS limit with 2 MB blocks

Mitigation:
- Proof aggregation for blocks (future optimization)
- Recursive STARKs for smaller proofs (research area)
- Accept trade-off for quantum security
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7.7.2 G.2 Proof Generation Time

Issue: Proof generation takes 30-120 seconds

Cause: STARK provers are computationally intensive

Impact:
- User experience: waiting time for transaction confirmation
- Mobile devices may struggle

Mitigation:
- Hardware acceleration (GPU/FPGA)
- Incremental proving during wallet sync
- Pre-computation of partial proofs
- Accept trade-off for transparency (no trusted setup)

7.7.3 G.3 Address Size

Issue: Addresses are large (1,632 bytes)

Cause:
- SPHINCS+ public key: 64 bytes
- ML-KEM-1024 public key: 1,568 bytes

Impact:
- Cannot use short addresses for display
- QR codes are large

Mitigation:
- Use shortened address (32-byte hash) for display/verification
- Full address only needed in transaction data

7.7.4 G.4 No Smart Contracts

Issue: Version 1.0 does not support programmable transactions

Reason: Complexity and attack surface reduction

Future work:
- Version 2.0 may add ZK-compatible smart contracts
- Research into STARKs for general computation
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8 End of Specification

This document contains all information necessary to implement a complete, quantum‐secure,
privacy‐by‐default blockchain. Implementations MUST conform to all requirements marked
[MUST] and SHOULD implement all performance optimizations.

Any ambiguity in this specification should be resolved by reference to the stated security proper‐
ties and the principle of conservative security (when in doubt, choose the more secure option).
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